
Contextualization and Exploration of Local Feature Importance
Explanations to Improve Understanding and Satisfaction of

Non-Expert Users
Clara Bove

clara.bove@lip6.fr
clara.bove@axa.com

Sorbonne Université, CNRS, LIP6
F-75005 Paris, France

AXA
Paris, France

Jonathan Aigrain
jonathan.aigrain@axa.com

AXA
Paris, France

Marie-Jeanne Lesot
marie-jeanne.lesot@lip6.fr

Sorbonne Université, CNRS, LIP6
F-75005 Paris, France

Charles Tijus
tijus@lutin-userlab.fr

Laboratoire CHArt-Lutin, University
Paris 08

Paris, France

Marcin Detyniecki
marcin.detyniecki@axa.com

AXA
Paris, France

Polish Academy of Science
Warsaw, Poland

ABSTRACT
The increasing usage of complex Machine Learning models for
decision-making has raised interest in explainable artificial intel-
ligence (XAI). In this work, we focus on the effects of providing
accessible and useful explanations to non-expert users. More specif-
ically, we propose generic XAI design principles for contextualizing
and allowing the exploration of explanations based on local fea-
ture importance. To evaluate the effectiveness of these principles
for improving users’ objective understanding and satisfaction, we
conduct a controlled user study with 80 participants using 4 dif-
ferent versions of our XAI system, in the context of an insurance
scenario. Our results show that the contextualization principles
we propose significantly improve user’s satisfaction and is close to
have a significant impact on user’s objective understanding. They
also show that the exploration principles we propose improve user’s
satisfaction. On the other hand, the interaction of these principles
does not appear to bring improvement on both dimensions of users’
understanding.

CCS CONCEPTS
• Human-centered computing → User studies; HCI theory,
concepts and models.
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1 INTRODUCTION
As Machine Learning (ML) models become increasingly accurate
and accessible, they are now used in a wide variety of domains
to support humans to make important decisions, such as making
medical diagnosis [35], assessing recidivism risks for prisoners [38],
or filtering applicants for a managing position [33]. Yet, a more
widespread adoption of ML models is for now limited by their
difficulty to provide explanations about the rationale behind their
predictions [5, 36]. Also, unintended behaviors of deployed models,
such as biased predictions or the existence of adversarial examples,
fuel the call for more interpretability [7, 26, 34]. These limitations
led to an increased interest in eXplainable Artificial Intelligence
(XAI).

In this research field, users are generally classified into categories
depending on their expertise level/domain, that can have different
needs and goals [25]: (i) AI practitioners, who are (at least) knowl-
edgeable about ML, (ii) agents, who are (at least) knowledgeable
about the involved ML application domain, and (iii) non-expert
users, who are neither knowledgeable about AI nor the application
domain. In this work, we focus on improving the understanding
of ML explanations for the latter non-expert users. It has been
established [18] that such users are in general more interested in
understanding the rationale behind a specific prediction, i.e. local
explanations, rather than the overall rationale of a model (i.e global
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explanations). Therefore, local feature importance explanations,
such as those provided by SHAP [21], appear to be appropriate for
such users. However, even though they match their expectations,
it has recently been shown that these local feature importance ex-
planations tend to be misleading for non-expert users [7]. They
may indeed contribute to the creation of false or incomplete beliefs
about the ML model. It has also been observed that the extent to
which non-expert users understand these explanations is sensitive
to whether they are presented as charts or as textual explanations
[32]. Thus, we argue there is still some more work needed to en-
hance how local explanations are presented to non-expert users.

We consider two such enhancement methods: we study how ef-
fective contextualizing and allowing the exploration of local feature
importance explanations are to improve the quality of explanation
for non-expert users, considering two components for this quality,
namely subjective satisfaction and objective understanding. Con-
textualization is considered an essential part of the explanation
process by the social science field [22, 24]. In the XAI community,
several works showed the positive impact of contextualizing expla-
nations by adding domain knowledge [17, 27, 29] or by displaying
relevant training examples [12, 23, 35]. However, most of these
works target expert users, even though non-expert users are likely
to also benefit from additional contextual information. Allowing the
exploration of the explanations is also an important requirement
to help non-expert users build better mental models [7, 16]. It is
considered a promising way to enhance local explanations by the
XAI community, as we describe in more details in Section 2.

In this paper, we present generic design principles to improve un-
derstanding and satisfaction of non-expert users through contextu-
alization and exploration. Regarding contextualization, we propose
to enhance local feature importance explanations by adding comple-
mentary information at three levels: on the ML system, on the ML
application domain and on external factors. Regarding exploration,
we propose to provide several explanation displays in order to
match different user needs, as well as allowing the interaction with
example-based explanations. We also provide an implementation
of these principles into a user interface for an insurance scenario.
We evaluate the effectiveness of our propositions through a moder-
ated study with 80 participants. The experiment we conduct in a
moderated lab setting shows that the contextualization principles
we propose significantly improve user’s satisfaction and is close to
have a significant impact on user’s objective understanding. They
also show that the exploration principles we propose improve user’s
satisfaction. On the other hand, the interaction of these principles
does not appear to bring improvement on both dimensions of users’
understanding.

2 RELATEDWORKS AND RESEARCH
QUESTIONS

A currently very active domain of XAI investigates how to design
explainable interfaces for different types of explanations. In par-
ticular, local explanations such as Shapley values [21] are widely
used in practice [9]. Yet, it has been shown that they can be mis-
leading or deceptive [3] because they do not justify the influence of
a feature’s on the prediction [1]; they can also lead to form false or
incomplete mental models about how the explained ML prediction

model works [7]. In this section we review recent works in XAI that
aims at improving the understanding of such local explanations,
considering in turn two types of enrichments: first we analyze
methods and tools that contextualize the explanations, then we
analyze works that allow users to explore the explanations.

2.1 Contextualizing explanations
It has been shown that the context of the prediction and basic
domain knowledge may be important for non-expert users to better
interpret ML explanations [15, 17]. For instance, Bellotti et al. [2]
argue that automated systems need to share sufficient information
about the context (what the system does and how it does it), so
users are able to understand their behavior. However, for now
there is no consensus on what it means in practice to provide
contextual information for ML explanations. In the literature, the
main approach consists in extracting automatically the context
from the ML system or the data [2, 12, 19, 23, 27, 27, 29, 35, 37].

Indeed, context can first be directly extracted from the ML sys-
tem, e.g. through Knowledge graphs (KG), in order to add domain
knowledge on top of local explanations. For example, KGs can en-
code better data representations [29], structure a prediction model
in a more interpretable way [27] or adapt semantic similarity for lo-
cal explanations [17]. Context can also be extracted from the dataset
in the form of examples like counterfactuals [21]. For a medical
diagnosis tool, it has been shown that some doctors seek to verify
the correctness of explanations provided for a medical diagnosis
through counterfactual examples and nearest neighbors present
in the training set [35]. These propositions have been designed to
help AI-experts and domain experts to better understand the ML
explanations. However, they can be relevant for non-expert users
as well. Martin et al [23] show that these users are more likely to
ask for concrete examples of output from the training set. Gomez et
al. [12] propose to contextualize local explanations by adding a vi-
sual representation of the dataset. For one instance, the explainable
interface graphically represents for each feature where its values
lie within the density distribution of the training set. However, the
lack of evaluation in this work makes it difficult to deduce whether
this proposition is useful to them.

To conclude, contextualization is an interesting approach to
improve the intelligibility of ML explanations. However, the current
methods to contextualize them have mainly been designed for AI-
experts and domain experts [10]. They can still be relevant for
helping non-expert users as it has been demonstrated by Gomez
et al. [12]. Yet, it remains important to compensate their literacy
gap [4], in particular for their domain knowledge.

2.2 Exploration in explanations
As compared to contextualization, exploratory methods have been
more extensively studied to improve local explanations intelligi-
bility. However, in the context of explainable interfaces, the term
"exploration" actually refers to two distinct principles. On one hand,
it can refer to allowing users to interact directly with the ML model
to observe the impact on the explanations. On the other hand, it
also refers to allowing users to navigate between several kinds
of explanations. Several works actually propose a combination of
these two principles.
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Interacting with the ML model. Several works in the literature
allow users to easily change the input values of the ML model to ob-
serve the impact on the prediction and on the explanations. Krause
et al. [16] describe in a case study how interactive dependence
plots can help data scientists assess the relevant of ML models.
Gamut [14] is another interactive visual analytic system designed
for data scientists to help them understand generalized additive
models (GAMs). Cheng et al. [6] show that having an interactive
interface improves non-users understanding and self-reported un-
derstanding, at the cost of an increased time spent on the interface.

Navigating between different explanations. Another aspect of
exploration resides in allowing users to navigate between different
kinds of explanations. For instance, Collaris et al. [8] state that
five fraud agents responded positively to being able to navigate
between a local feature dashboard (with feature importance, partial
dependence plots and distribution in training dataset) and a global
rule dashboard (representation of locally extracted decision rules).
Wang et al. [35] report that medical doctors request to have access
to neighbor and counterfactual instances to better interpret the
prediction of a diagnosis tool. Gomez et al. [12] also combine local
feature importance explanations with counterfactual examples. The
Gamut tool [14] combines local feature importance explanations
with data density estimations.

Overall, exploration is considered as an important feature to
include in explainable interfaces by the XAI community. This is
why we include this notion in the design principles we propose and
present in Section 3.

2.3 Research questions
This paper aims at studying the explanations provided in the form of
enriched local feature importance for non-expert users, considering
the two types of enhancements discussed in the previous sections,
namely contextualization and exploration. More precisely, the aim
is to examine how effective they are, individually and combined, to
improve the explanation quality for users with no expertise, neither
in the ML nor in the involved application domains. As discussed in
more details in Section 5.1, we consider two components for this ex-
planation quality, distinguishing between objective understanding,
which assesses the extent to which users actually understand the
explanation, and subjective satisfaction, which assesses the extent
to which users appreciate the interface. More precisely, the study
is driven by the following research questions and hypotheses:

• RQ1 : How effective are contextualizing and allowing explo-
ration for improving non-experts users’ understanding of
Local Feature Importance explanations?
– H.1.1 : Contextualizing these explanations improves non-
expert user understanding

– H.1.2 : Allowing exploration in these explanations im-
proves non-expert user understanding

– H.1.3 : Contextualizing and allowing exploration in these
explanations improve even more non-expert user under-
standing

• RQ2 : How effective are contextualizing and allowing explo-
ration for improving non-experts users’ satisfaction of Local
Feature Importance explanations?

– H.2.1 : Contextualizing these explanations improves non-
expert user satisfaction

– H.2.2 : Allowing exploration in these explanations im-
proves non-expert user satisfaction

– H.2.3 : Contextualizing and allowing exploration in these
explanations improve even more non-expert user satisfac-
tion

In order to answer these questions and reject null hypotheses,
we develop an interface offering enhanced local feature importance
explanations: we investigate new modalities for designing contex-
tualization and exploration for the case of non-expert users, as
described in the next sections.

3 DESIGN PRINCIPLES
This section presents the generic XAI principles we propose for
contextualizing and allowing exploration in local feature impor-
tance explanations: their respective description, purpose and level
are discussed in turn in the following sections and summarized in
Table 1. We propose an implementation of these principles in an
insurance usage scenario described in Section 4.

3.1 Contextualizing explanations adding
transparency

We propose XAI principles for contextualizing local feature impor-
tance explanations by providing more information at three levels:
about the ML System, about the ML application domain and about
external factors influencing indirectly the prediction. This addi-
tional information makes the ML system more transparent about
its purpose.

3.1.1 ML Transparency. As non-expert users can find it difficult to
get a global view on the ML system that generates the prediction,
we propose a ML transparency principle, that aims at providing
guidance about how to interpret the explanations users get for a
prediction.

Non-expert users do not know how the model has been trained
and which attributes it uses to make a personalized prediction.
Moreover, they most likely never interacted before with local fea-
ture importance as explanations and do not know how to interpret
them. Thus, it is important to be more transparent about the overall
ML system so users understand its purpose and basic operations,
as argued by Bellotti et al. [2]. For example, local explanations can
be misunderstood as global ones if the users are not told that the
displayed effect is only true for this specific prediction.

We propose that this ML transparency is accessible at the expla-
nation level, meaning users have it prior to interacting with the
explanations, so as to better interpret them.

3.1.2 Domain transparency. As previously presented, explanations
should provide some brief justification [1]. Thus, we propose to
associate local feature importance explanations with additional
global information related to the ML application domain. The do-
main transparency principle provides domain knowledge and aims
at helping users understand why a feature is used by the ML system,
and how it might impact the prediction, regardless of its effect.

The type of explanations we consider in this research cannot
make clear why a feature has a specific influence on the prediction.
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Also, non-expert users lack knowledge on the domain of appliedML.
Hence, they might not understand why some non-intuitive features
are needed in this context for calculating the prediction. Justifying
the feature importance with respect to the applied domain is needed
by these non-expert users to better understand the prediction.

This domain transparency is generic, i.e. applicable to all in-
stances, and should be paired with each local feature importance ex-
planation to improve understanding of explanations’ operations.We
also believe this information has to be provided by domain experts,
rather than extracting this knowledge from the system [17, 27, 29],
or showing examples from the training dataset [12, 35].

3.1.3 External transparency. Local feature importance provides
explanations about a given predictionmodel but external factors can
also influence the outcome. We propose an external transparency
principle that makes more explicit the impact of such factors. We
call external information the type of knowledgewhich is not domain
specific and differs from the information considered in the previous
paragraph.

Indeed, some external events can affect the prediction because
of real-life context (e.g. external events such as the COVID crisis
that indirectly influences the prediction through the dataset) and
algorithmic processes (e.g. data that are collected but not used).
For instance, some information a user is requested to give can be
excluded from the ML model by design (e.g. personal information
like name, gender, or phone number can be asked to communicate
with users, but it is not used by the ML prediction model), but users
may believe it is taken into account for the prediction they get.
Thus, it is important to be transparent with the users about which
factors impact or not the prediction, even though this information
might be external to the model.

This additional external information should be displayed at the
explanation level so users have all the elements needed to better
interpret the explanations.

3.2 Allowing exploration of explanations with
interactive features

We also propose design principles for allowing users to explore
the explanations at two levels: setting an interactive display of the
explanations at an overall explanation level, and showing example-
based explanations at a feature level.

3.2.1 Interactive Display. Local feature importance explanations
usually display features in decreasing order of the absolute feature
importance values. Users see the major positive influence shown
at the top together with the major negative influence. This is a
faithful representation of the ML model behavior. To have a more
user-centered approach, we propose an interactive display principle
to allow users to adapt the display of the feature according to their
own needs and goals.

Indeed, users may want to test different hypotheses when inter-
acting with a ML system to help them make a decision regarding
the prediction [6, 8, 14]. For non-expert users, it is important to
provide exploratory paths as they could be confused about what
values can possibly be modified.

Thus, this interactive display should be accessible at the top of
the explanations level so users can choose their display preferences
to get the explanations in the most relevant way possible for them.

3.2.2 Example-based explanations. Local feature importance ex-
planations reveal feature effects on a given prediction for each
attribute. Because the explanations are local, the feature effects are
specific to each prediction. We propose to make explicit that the
local feature importance explanations are only true for one instance,
by showing examples of prediction variations when changing one
feature value.

Like counterfactuals [12, 16, 35], this example-based explana-
tions principle should emphasize the impact of potential other
values of each feature on the prediction. Indeed, it is not intuitive
for non-expert users that the score of one attribute is specific to
each instance. They may believe it is the same score for everyone
(e.g. for a car insurance pricing service, a specific car model would
always has the same impact on the premium) or always the same
independently from the value of this attribute (e.g. any car model
would have the same impact on the premium). Thus, it is important
for non-experts users to clarify that the explanations are only valid
for their own instance, so they do not build a wrong mental model
of the ML System for future interactions.

The example-based explanations should appear at a feature level
as a second layer of information for users to test their hypothesis
on the potential effect of other feature values on the prediction.

4 APPLICATION: IMPLEMENTATION OF THE
DESIGN PRINCIPLES IN AN INSURANCE
SCENARIO

This section presents the application of the XAI principles we pro-
pose, as described in Section 3, into an insurance-related interface.
We describe the usage scenario in Section 4.1 and the design process
for implementing the principles we propose in the user interface in
Section 4.2.

4.1 Usage scenario
We apply the principles we propose in a car insurance pricing in-
terface. In this scenario, users provide several pieces of information
regarding their insurance settings and background (coverages and
options for the vehicle, personal bonus/malus, insurance history),
the vehicle to insure (car’s details, its usage and parking) as well as
personal information (name, age and license information for each
driver, address). This information is usually required by insurers to
estimate a price according to each individual risk to have accidents
and/or damages. The aim of the XAI interface is that prospective
clients using this service to calculate a personalized price for a new
car insurance can understand how their information impact the
price they get.

4.2 XAI Interface
The implementation of the principles we propose, as presented
in Section 3, is illustrated in Figures 1 and 2. We describe in the
following paragraphs the design of these explanations with the
implemented principles.
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Type of
principle Principle Description Purpose Level

Contextualization
Provide users with
missing contextual
information

ML
Transparency

Give transparency on the ML system’s
scope and basic operations. It should
provide guidance regarding how to
interpret the explanations.

Understand the ML system
and its basic operations for
explanation interpretation

At explanation
level

Domain
Transparency

Pair each local feature importance
explanation with global information
provided by a domain expert. It should
provide some brief justification about
how a feature might impact the
prediction regardless of its value.

Compensate for lack in
domain knowledge

At feature
level

External
Transparency

Complete the explanation with any
other relevant information that could
justify the prediction. It should provide
more transparency on real-life context
or the algorithmic process.

Add elements of
contextualization
which are not directly
related to the ML system

At explanation
level

Allow exploration
Provide users with
interactive features
to test their hypotheses

Interactive
Display

Allow users to adapt the display of the
explanations according to their needs
and goals. It should provide relevant
options of display.

Ease access to most
relevant explanations
according to the users’
goal.

At explanation
level

Example-based
explanations

Provide an interactive example-based
explanation for each feature. It should
help users understand the impact on
the prediction of different values
per feature.

Understand potential
feature importance effects
on the prediction

At feature
level

Table 1: Proposed XAI principles to improve understanding of local feature importance explanations for non-expert users.We
describe and define the purpose of each principle we propose for contextualizing and allowing exploration. We also define the
level of the ML explanations where the described principle is more valid: "explanation level" refers to principles that apply to
the overall ML explanations for one prediction; "feature level" refers to the principles that apply to each feature explanation.

4.2.1 Card-based design. We apply a card-based design for the
display of the explanations, as illustrated in Figure 1. Compared
to classic local feature importance presentation [21], this design
choice allows us to associate more content and interactions with the
initial explanations we generate from ML interpretability solutions.
Thus, we consider features individually and adapt the length of the
card to the amount of content to display. A card contains two parts
with different pieces of information related to the feature.

The top part displays the feature importance explanation: it con-
tains the feature’s label, its value and its effect on the prediction.
We believe it is important for labels to be user-friendly so we pro-
pose to name them with non-technical labels. Also, we propose to
design visually the effects on the prediction so users can identify
quickly what the effect is on the prediction: e.g. for a price predic-
tion, the effect is displayed in green if it decreases the price, in red
if it increases it. Finally, we provide a more user-friendly visual
representation of the feature with an illustrative icon.

The bottom part of the card is dedicated to contextualize the
feature importance explanation with the domain transparency, and

to allow exploration with example-based explanations, as discussed
in the next subsections.

4.2.2 Implementing contextualization principles.

ML Transparency. We design an onboarding text above the cards
(see Figure 1) of local feature importance explanations: it explains
how the price for a car insurance is estimated by the ML system
and makes explicit which users’ personal information is used to
give the personalized price. In addition, it provides information
about how to read and interact with the feature-associated cards.

Domain Transparency. Each feature-associated card contains two
complementary pieces of information: we display local feature
importance as the basic explanation at the top of the card, and we
pair it with more generic information about how the feature can
impact on the price in the context of car insurance on the bottom
(see Figure 1). This information is provided by an expert, i.e. an
actuary in the considered scenario.
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Discover 
your premium

(Hidden city) 47 years old
Driving License

Driving License

Figure 1: Application of contextualization and exploration principles in a fictive insurance-related scenario. This interface
presents a personalized premium price for a prospective client on the left, and explanations on the right. Note: The interface
has been translated from the original language used for the evaluation.

External Transparency. We introduce an external factor card into
the list of feature-associated cards. It has a similar design to feature-
associated ones, except that it has a different background color to be
visually differentiated by users (see Figure 1). It displays a feature
that is external to the ML model but has contextual importance for
users. In the context of an insurance-related service, this generic
principle applies to gender, information requested from the users
so that the system knows how to address them but not used by
the prediction model. Users may be suspicious about how their
gender can be used to affect the price they get for a car insurance.
Therefore, we explicitly display that this piece of information is not
used by the model.

4.2.3 Implementing exploration principles.

Interactive display. We design filter buttons above the list of the
feature-associated cards (see Figure 1), allowing users to change
the ordering of the cards according to their goals. We propose
three sorting options to match users’ needs. First, cards can be
displayed in decreasing order of the absolute values of the feature
importance, so users can see which features influence most the
price they get. Second, cards can be sorted so as to display first the
cards that correspond to actionable features, i.e. features that can
be realistically edited by users (e.g. users can switch the type of
coverage they want, but they cannot change the date when they
obtained their driving license), so that they can try to optimize
the price they get [31]. Third, cards can be sorted according to the
categories of information they contain, so as to follow the logic
of the input stage (i.e. when users fill in their information). Thus,
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The information below shows you the price you would have received for your premium with a different car model, all other information being
equal. Note that all information relating to your vehicle depends on the model and make of the vehicle. Therefore, this information is given as
an example to understand the impact of your vehicle's make and model on the premium price you get, and does not accurately reflect reality.

Your price in relation to the make and model of your vehicle

Price examples for other makes and models of vehicle (for your profile)

For your vehicle model Your price 

€ 187.22
0.00 €

For another vehicle model , your price would be:

To select....

The model that gives you the lowest price

A model that gives you a similar price

The model that gives you the highest price

CITROEN - SAXO ...........................

RENAULT - TWINGO ......................

MERCEDES BENZ - VINTO ............

143.91 €

183.33 € 

236.81 € 

Effects of the estimated value of the vehicle
(on your price (in euros, for your profile

The Argus estimates the value of your vehicle based on the average Argus price. The information below shows you the price you would have
obtained for your premium with a different estimated value of your vehicle, all other information being equal. Note that all information relating
to your vehicle depends on the model and make of the vehicle. Therefore, this information is given as an example to understand the impact of
the vehicle's value on the premium price you get, and does not accurately reflect reality.

Figure 2: Application of the example-based principles for allowing exploration. For features with continuous values, we use
bar graph to display example-based explanations as illustrated on the left. For features with categorial values, we display
a drop-down list of the most frequent values of the feature with associated prediction, as well as three relevant examples
of feature values, as illustrated on the right. Note: The interface has been translated from the original language used for the
evaluation

users can find a logical path between the input stage and the output
stage (i.e. display of the predicted price with explanations).

Example-based explanations. Weplace on each feature-associated
card a button to access a second page displaying details in the form
of example-based explanations, as illustrated in Figure 2.

In the considered pricing scenario, most features take numerical,
continuous values. For these features, we propose to display a bar
graph with up to twenty potential values and the associated pre-
dicted prices. Bars have difference colors to allow users to identify
easily the different effects on the predicted price: blue identifies
the user’s value or values with the same predicted price; red (resp.
green) is used for values increasing (resp. decreasing) the predicted
price.
For categorical features, we propose to display a drop-down list of
themost frequent values of the feature with the associated predicted
prices. In addition to this list, we also display three more examples
of feature values: one for the highest and lowest predicted prices, as
well as one for a similar predicted price but with a different feature
value than the one from the user. This allows users to know where
their information fit in the overall data distribution.

4.2.4 Combining contextualization and exploration principles. We
believe that the ML transparency principle can be beneficial to both
exploration principles in the explainable interface. As described in
Section 4.2.3, the principles we propose introduce new modalities
of interaction and new explanations. In a hybrid approach, the ML
transparency can make explicit how to use these new exploratory
features.

For the interactive display, we implement an introduction text
at the beginning of each category of feature-associated card for
each filter option we designed (see Figure 1). The purpose of this
introduction text is to help users understand what the categories
of features are and how to interact with them.

For the example-based explanation, we implement information
about the purpose of these second layers of explanations in addition

to the local feature importance one, and guide users on how to
interpret them towards the prediction they get (see Figure 2).

5 EXPERIMENT
To answer the studied research questions and to evaluate the ef-
fectiveness of the XAI principles we propose, we describe in turn
below the material and the method we use to conduct the monitored
study at the INSEAD-Sorbonne University Behavioural Lab.

5.1 Material
In this section, we present the interactive prototype we develop as
the basis for the evaluation. We use a ML model to predict a person-
alized price for a prospective car insurance customer and extract
explanations for this price with the SHAPmethod [21], as described
in Section 5.1.1. We use this prototype to test our hypothesis to-
wards the effectiveness of the XAI principles we propose on two
dimensions of user’s understanding, as described in Section 5.1.2

5.1.1 Interactive prototype. We develop an interactive prototype
for a car insurance pricing interface, as described in Section 4.1. We
describe in turn below the model we use in order to present SHAP
and partial dependence explanations to users, the dataset and the
explanation extraction.

Pricing model. We develop, with the help of an actuarial expert,
and use a combination of two ML models to compute a personal-
ized price for each user. The first model is a Gamma model which
estimates the average price of a sinister for a specific person; the
second one is a Poisson model which estimates the frequency of
a sinister for a specific person. The final individualized price is
obtained as the product of the two estimations.

Dataset. Thesemodels are trained using pg17trainpol and pg17trainclaim [11],
two training datasets used for the 2017 pricing game of the French
Institute of Actuaries. Pg17trainpol contains 100,000 policies for
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private motor insurance and pg17trainclaim contains 14,243 claims
for third-party liability risks of these 100,00 policies.

Explanation extraction. We use SHAP [21] to generate local fea-
ture importance explanations for the price estimation. It is one
of the standard local feature importance methods. It provides the
contribution of each feature value to the prediction as compared to
the average prediction. To generate example-based explanations,
we compute partial dependence plots for each feature. For a given
feature, we compute the price obtained when this feature value
changes while keeping all other feature values unchanged. Then, we
adapt the display depending on whether the feature is continuous
or categorical, as explained in Section 4.2.3.

5.1.2 Hypothesis testing. We use the interactive prototype to an-
swer the studied research questions on the effectiveness of the prin-
ciples we propose towards the objective understanding and satisfac-
tion of non-expert users. We expect that the principles we propose
increase both the objective understanding and user’s satisfaction,
as presented in Section 2.3. We also expect that the interaction
of these principles improves even more both dimension of user’s
understanding. More formally, we consider null hypotheses of the
form "the considered factor provides no significant improvement
of the considered score" for each of the two factors (contextualiza-
tion and exploration) and their interaction, and for each of the two
scores (objective understanding and satisfaction).

5.2 Method
We describe in turn the experiment setup, the evaluation question-
naires, the study procedure and the method to analyze the collected
results. The method has been approved by an Institutional Review
Board (IRB). We pre-tested it with 4 participants at the INSEAD-
Sorbonne University Behavioural Lab to validate the understanding
XAI interfaces and questionnaires presented in this section, and to
adjust the vocabulary used in the questions.

5.2.1 Experiment setup. We recruited non-expert participants from
a large open network of volunteers of the INSEAD-Sorbonne Uni-
versity Behavioural Lab. Participants were randomly assigned to
one of the four versions of the interface, allowing us to compare
the impact of both contextualization and exploration factors on
scores of objective understanding and satisfaction. We discuss in
turn below the participant recruitment and interfaces they were
assigned to.

Participant recruitment. We recruited 91 participants from a large
open network of volunteers at the INSEAD-Sorbonne University
Behavioural Lab, filtered to meet the requirements of our experi-
ments. Participants were aged from 18 to 35 (average: 24.5 ± 3.8),
had various demographics (e.g. gender, job position, level of study,
driving experience). To ensure the participants were non-experts
in both AI and insurance, we asked them to self-report their lit-
eracy for both topics on a 6-point Likert scale. We excluded the
data of 2 participants who reported literacy scores between 4 to
5 at the end of the experiment, despite the initial filtering. After
checking the screen recordings, we also excluded 9 participants
who answered the questions without ever interacting with the in-
terface. The results analyzed in the next sections thus rely on the

evaluation collected from 80 participants, evenly distributed across
the four versions of the interfaces we proposed. All participants
were financially compensated at the end of the experiment.

Tested interfaces. In this monitored experiment, we use 4 versions
of our interface to evaluate all four conditions required for the
hypothesis testing. One corresponds to the interface described in
Section 4, and the others are partial variants which implement none
or only one category of principles (contextualization vs exploration).
We do so in order to be able to evaluate the impact of each factor,
as well as their possible interaction when they are associated. More
precisely, the different versions are designed as follows:

• Interface A is the baseline interface without any factor. It
simply displays the local feature importance explanations
with the card-based design described in Section 4.2.1. None
of our design principles are applied in this version.

• Interface B is the contextualization factor interface. It adds
to interface A the three principles we propose for contextual-
ization: ML transparency, domain transparency and external
transparency (see Section 4.2.2).

• Interface C is the exploration factor interface. It adds to
interface A the two principles we propose for allowing ex-
ploration: the interactive display and the example-based
explanations (see Section 4.2.3).

• Interface D is the interaction interface. It combines all the
principles of contextualization and exploration (see Sec-
tion 4.2.4). Figures 1 and 2 present screenshots of this version.

5.2.2 Evaluation questionnaires. Evaluating the effectiveness of
explanations remains a challenging task [6, 7, 20, 24, 25] for which
numerous methods and quality criteria have been proposed (e.g.
see the survey proposed by Hoffman et al. in [13]). A consensus
has recently been reached, according to which this assessment
needs to take into account two distinct components, evaluating
both objective understanding and subjective satisfaction [6, 7]. In
this work, we follow this approach and describe in the following
paragraphs the two questionnaires we use in the experiment, as
well as an additional demographic questionnaire.

Objective understanding. We propose a questionnaire approach,
similar to Cheng et al. [6]. Each item in the questionnaire is a
statement, for which users can either answer "true", "false" or "I
don’t know". We design three types of questions to capture different
components of user understanding:

• (i) Explanations’ scope questions measure the extent to which
users understand what information the ML system is using
to give a prediction. e.g. Feature X impacts the prediction
Marianne gets.

• (ii) Explanations’ effects questions measure the ability of
users to understand the type of effect a feature importance
has on the prediction they get. e.g. Feature X has a positive
effect on the prediction Marianne gets.

• (iii) Explanations’ locality questions measure the users’ un-
derstanding of the difference between the influence of their
attributes and global explanations. e.g. Feature X would prob-
ably have a different impact on the prediction for another
person.
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Interface B
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Interface A

#1
Contextualization
and Exploration

#2
Exploration

only

#3
Contextualization

only

#4
No factor

15.05 (± 2.96) 14.32 (± 2.60) 15.90 (± 2.32) 14.37 (± 2.87)
Table 2: Objective understanding scores for all four conditions of the 2x2 factorial design. An overview of the descriptive
statistics is displayed on top with boxplots figures.

For each question, an expected answer is predefined. We consider a
participant provides a correct answer if his/her answer is identical
to the expected one.

Self-reported satisfaction. We adapt the eight item self-reporting
questions from the Explanation Satisfaction Scale [13], in order
to assess users’ satisfaction. Participants are required to answer
on a 6-point Likert scale, from “Strongly disagree” (1) to “Strongly
agree” (6), as it has been shown that 6-point response scales are a
reasonable format for psychological studies [30].

Demographics. In addition to the previous items which are re-
lated to our research questions, a demographic questionnaire in-
cludes two questions regarding the participant literacy in artificial
intelligence/machine learning and insurance, again using 6-point
Likert scales, from “Not familiar at all” to “Strongly familiar”, to
ensure that participants are indeed non-expert users. It also asks
participants their familiarity with driving, car insurance, driving fre-
quency and claim experiences. Finally, we collect basic demographic
information such as age, gender and education level. Participants
can also share their insights and comments on the study in open
response questions.

5.2.3 Study procedure. We conduct the user study in a lab set-
ting at INSEAD-Sorbonne University Behavioural Lab, as it has
been shown that the presence of a moderator increases partici-
pants’ focus [7]. It also allows them to ask questions throughout
the evaluation to make sure they understand the instructions.

After giving written consent and prior to the experiment, par-
ticipants are introduced to the following experimental scenario:
"Marianne, a 43 year-old woman, is looking for a new insurance for
the car that she and her 21 year-old daughter drive. She decided to
use our XAI interface to understand the impact of her information
on her insurance price, and has now some questions about the
explanations she receives". The role of the participants is to advise
her about these explanations. This scenario allows us to present the
same information and explanations to all participants, which makes
the comparison and the statistical analysis significantly easier than
if participants inputted their own information into the ML system.

Then, each participant is randomly assigned to one version of the
interface for the evaluation. They take the objective understanding

questionnaire (see Section 5.2.2) while interacting with the inter-
face, and then answer the subjective satisfaction questionnaire (see
Section 5.2.2). At the end of the experiment, participants complete
the demographic survey.

5.2.4 Data analysis. We remove one extreme outlier (below ’Q1 -
3xIQR’ for the exploration factor regarding the satisfaction rate).
As the collected data are normally distributed, we use 2x2 factorial
ANOVA to analyze the effects of the two factors, contextualization
and exploration, to test our hypotheses as presented in the previous
Section. Table 4 displays the results for the scores obtained in the
experiment. The objective understanding is rated from 0 to 22 cor-
responding to the number of correct answers for the 22 questions of
the objective understanding questionnaire. The user’s satisfaction
is reported from 1 to 6 corresponding to the average score over the
eight satisfaction’s dimensions. The significance level is defined as
α= .05. We do not use the Bonferroni correction since we compare
conditions that are orthogonally manipulated. Tables 2 and 3 also
show comparative boxplots for the objective understanding and
satisfaction scores obtained for all four conditions (contextualiza-
tion principles effects, exploration principles effects, the interaction
of both, and the absence of principles), with one datapoint for each
participant.

6 RESULTS
We use the results presented in Tables 2, 3 and 4 to answer the two
research questions we consider regarding objective understanding
in Section 6.1 and user’s satisfaction in Section 6.2.

6.1 RQ1: How effective are contextualizing and
allowing exploration for improving
non-experts users’ objective understanding
of Local Feature Importance explanations?

We analyze the significant effects of both contextualization and
exploration factors on user’s objective understanding score. As
neither exploration factor nor the interaction of the two factors
show significant impacts, we select the best model to analyze these
statistical differences and use one-way ANOVA to measure the ef-
fect of contextualization on the objective understanding score. The
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#1
Contextualization
and Exploration

#2
Exploration

only

#3
Contextualization

only

#4
No factor

4.79 (± .69) 4.27 (±.69) 4.57 (± .86) 3.65 (± 1.10)
Table 3: Satisfaction scores for all four conditions of the 2x2 factorial design. An overview of the descriptive statistics is dis-
played on top with boxplots figures.

analysis of Table 4 leads to three main observations commented in
turn below. First, contextualization leads to the biggest improve-
ment in objective understanding, and is close to reach the level of
statistical significance. In contrast, both exploration and the interac-
tion of contextualization and exploration do not improve objective
understanding overall.

Contextualization improves objective understanding. On the box-
plots presented above Table 2, we can see the interface including
contextualization principle only (interface B) shows the highest
improvement in objective understanding with an average score of
15.90 correct answers out of 22, i.e. .85 point more than when these
principles are paired with exploration ones (interface D) or 1.53
point more than when no principles are applied (interface A). When
comparing the average means of conditions with contextualization
principles applied (interfaces B and D) in Table 4, we observe that
the contextualization factor increases by +1.15 points the objective
understanding score. This difference is not statistically significant
at 5% level however it is close (t=1.90 p=.06).

Although we fail to reject the null hypothesis, these obser-
vations lead us to believe that contextualizing local feature
importance is a promising tool to improve non-expert users
objective understanding (H.1.1).

Exploration does not have a significant impact. Table 2 shows
that participants with the interface including exploration princi-
ples (interface C) obtain the lowest average score of objective un-
derstanding of all four conditions. When comparing the impact of
exploration factor, we observe a similar trend as the average score
for all conditions including exploration principles is .48 point lower
than when not applied. Yet, we do not observe a significant impact
of exploration principles on objective understanding.

Thus, we fail to reject the null hypothesis and are not able
to demonstrate the positive effect of exploration on the objective
understanding of local feature importance in our context (H.1.2).

The interaction of contextualization and exploration does not have
a significant impact neither. Previous observations suggest a promis-
ing positive effectiveness of contextualization but reject exploration
one regarding the objective understanding. When analyzing the

interaction effect in a two-way ANOVA, we see no statistically
significant impact.

Thus, we fail to reject the null hypothesis and are not able
to demonstrate that the interaction of contextualization and explo-
ration principles improves even more objective understanding of
non-expert users (H1.3).

6.2 RQ2: How effective are contextualizing and
allowing exploration for improving
non-experts users’ satisfaction of Local
Feature Importance explanations?

Similarly to the previous analysis for objective understanding, we
analyze the significant effects of both contextualization and ex-
ploration factors on user’s satisfaction score. As the interaction of
the two factors shows no significant impact again, we select the
best model to analyze these statistical differences and use two-way
ANOVA to measure the effect of contextualization and exploration
factors on the satisfaction score. Table 3 shows that all three condi-
tions with the principles we propose have an average satisfaction
score higher than when no principle is applied (+.62 point for explo-
ration principles, +.93 point for contextualization principles, +1.14
point for the combination of both principles). These differences
are significant for both contextualization and exploration factors,
which leads us to conclude that both factors significantly improve
users’ satisfaction. In contrast, the interaction of the two factors
does not show a significant impact on users satisfaction. These
conclusions are discussed in turn below.

Contextualization significantly improves users satisfaction. Ta-
ble 3 shows that contextualization principles (interface B) obtain a
higher satisfaction rate as they increase by .93 point the average
satisfaction score compared to the interface without these princi-
ples (interface A), and by .30 point as compared to the interface
with exploration principles (interface C). The positive effect of
contextualization principles on users satisfaction can also be ob-
served by the datapoint distribution for each participant in the
boxplots displayed above Table 3. This difference is also observed
in the two-way ANOVA analysis in Table 4 as the average mean
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Objective understanding
With factor Without factor One-way ANOVA
means (sd) means(sd) t-value p-value

Contextualization 15.49 (± 2.64) 14.34 (± 2.73) 1.90 .06°
Exploration 14.68 (± 2.78) 15.13 (± 2.59)

Satisfaction

With factor Without factor Two-way ANOVA
(intercept mean = 3.76)

means (sd) means(sd) t-value p-value
Contextualization 4.68 (± .77) 3.96 (± .89) 3.80 .0003***
Exploration 4.53 (± .69) 4.11 (± .98) 2.15 .03*
Significance code: *** p<.001 ; ** p<.01 ; * p<.05 ; ° p<.1

Table 4: Comparing improvement of objective understanding between two factors: contextualization and exploration. The
results of a one-way ANOVA regarding the significant effect of contextualization factor on user’s objective understanding are
displayed on the top. The results of a two-way ANOVA regarding the significant effect of contextualization and exploration
factors on user’s satisfaction are displayed on the bottom.

for contextualization factor is +.72 point significantly higher than
the average mean for interfaces without (t=3.80 p=.0003).

Thus, we reject the null hypothesis as contextualization pa-
rameter is greater than the claimed value and conclude that con-
textualization significantly improves non-expert users’ sat-
isfaction (H2.1).

Exploration also significantly improves users satisfaction. Simi-
larly to interfaces including contextualization principles, Table 3
shows that the interface including the exploration ones (interface
C) increases users satisfaction by .62 point as compared to the inter-
face without any principle applied (interface A). The positive effect
of the exploration principles can also be observed by the datapoints
distribution for each participant in the boxplots displayed above
Table 3. When analyzing the impact of the exploration factor in
Table 4, the results of the two-way ANOVA analysis shows that the
average mean for the exploration factor is +.42 significantly higher
than the average mean for interfaces without it (t=1.90 p=.03).

Thus, we reject the null hypothesis as the exploration parame-
ter is greater than the claimed value and conclude that exploration
significantly improves non-expert users’ satisfaction (H2.2).

The interaction of both principles does not have a statistically
significant impact. First, Table 3 shows that the combination of both
principles (interface D) has the highest improvement as it increases
by +1.14 points participants’ satisfaction rates as compared to the
interface without any principles (interface A), by +.22 point as
compared to the interface with only contextualization principles
(interface B) and by +.52 as point compared to the interface with
only exploration principles (interface C). On the boxplots figures
displayed above Table 3, we observe that the 1st quartile for the
combination condition is 4.47, which +.10 point higher than the 3rd
quartile for the condition without any principle applied, meaning
that 75% of participants interacting with the contextualization and
exploration gave higher satisfaction rates than 75% of participants
using interfaces without any principle applied.

Yet, the interaction of the two factors has no statistical significant
impact. Thus, we fail to reject the null hypothesis and are not

able to demonstrate the positive effect of both principles interaction
on users satisfaction (H.2.3).

7 CONCLUSION
In this paper, we propose generic design principles for contextual-
ization and exploration of local feature importance explanations
for non-expert users. We also propose an implementation of these
principles into a user interface for a car insurance pricing scenario.
The experiment we conduct in a moderated lab setting shows that
the contextualization principles we propose significantly improve
user’s satisfaction and are close to significantly improve user’s ob-
jective understanding. Also, the results show that the exploration
principle we propose significantly improves user’s satisfaction. On
the other hand, the interaction of these principles does not ap-
pear to bring significant improvement on both dimensions of users’
understanding.

It is noteworthy that the results we obtain differ from the ones
presented in the close work of Cheng et al. in [6]. In their experi-
ments, allowing users to interact with the ML model improves their
objective understanding, but does not increase their satisfaction in
the system, whereas we observe the opposite trend. One possible
explanation for these diverging results could be the difference in
the considered application domain: insurance is often perceived as
an opaque industry [28], as confirmed by several participants of the
preliminary user workshops we conducted. It is possible that par-
ticipants in our experiments have low expectations when it comes
to the transparency of insurance solutions, which could lead them
to consider any insurance solutions that are willing to expose their
ML model as more trustworthy. The same observation can be made
about the contextualization principles we propose: it is possible
that part of the observed improvement in satisfaction ratings is due
to the perceived opaqueness of the insurance industry.

Future works will aim at investigating this hypothesis, in partic-
ular extending the conducted study to other application domains,
in order to have a more comprehensive view of the impact of the
principles we propose. Other directions for refining the conducted
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study will focus on other possible effects of interest. The latter e.g.
include a possible correlation between objective understanding and
subjective satisfaction, or a possible effect of a notion of user en-
gagement in the explanation interaction that could be derived from
the collected information about their having a driving license. An-
other direction is to increase the number of participants: the current
number is e.g. not high enough to allow a comparison of the three
contextualization principles we propose (ML, domain or external
transparency, as well as their combined effect). Future works will
aim at performing a wider study making it possible to investigate
their potential differences. Conducting more detailed analyses to
evaluate the effect of the collected demographic information will
also make it possible to obtain more detailed insights about the
effectiveness of explanations provided to non-expert users, tackling
one of the major current challenges of the XAI community.
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