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ABSTRACT

Few-Shot Object Detection (FSOD) allows fast adaptation of
an object detection model to new classes of objects using few
examples per class. This has many applications, in partic-
ular in satellite and aerial observation, as it allows learning
from experts who can only annotate a few examples for new
classes and helps migrate models across tasks. In this work,
we present a technique to improve the performance of FSOD
in remote sensing by defining a contrastive loss that utilizes
parts of objects. For this, we generate, what we call, Object
Parts Proposals (OPPs) on the fly for each novel class, and
use them to learn more robust features with an additional con-
trastive objective. We observe that training with OPPs brings
a consistent improvement over the state-of-the-art when eval-
uating on the DIOR dataset.
The code is available at https://github.com/arthu
rchevalley/Improving-FSOD-on-RSI-using-
Sub-Parts.

1. INTRODUCTION

Remotely-sensed images (RSI) have become an invaluable
source of information for various applications, ranging from
agriculture and forestry to urban planning and disaster man-
agement. Many RSI enabled tasks involve some kind of de-
tection of objects on the ground, hence the development of
object detection methods for RSI has seen a tremendous in-
crease, especially since the advent of deep learning methods
[1]. One of the key challenges in effectively utilizing RSI
for object detection tasks is the need to identify highly spe-
cific object classes, often not among those that the base model
has been trained on, often difficult to characterize without do-
main expertise and therefore costly to obtain in large num-
bers. Consequently, there is a pressing demand for object
detection techniques that can operate in a low-data regime,
providing accurate results even when few labeled examples
are available. This would enable agile models to adapt to new
scenarios, which is crucial, for example, in the insurance sec-
tor, where the nature of objects to be detected varies greatly.

Moreover, RS images present multiple sources of com-
plexity that distinguish them from natural-view images.
These complexities include significant variations in scale,
resolution, and object characteristics, and they make it even

Fig. 1. Main intuition behind our Objects Parts Proposal OPP:
a sub-region of an object, such as the cockpit of an airplane
(left, black square), provides significant signal regarding the
type, localization, and orientation of the entire object. The
right image illustrates the new regions proposed by the ex-
traction process: the original bounding box in pink, and the
two sub-parts in green and yellow. The sub-parts may extend
outside the original bounding box.

more difficult for models to generalize effectively when learn-
ing from limited examples. Furthermore, the new objects of
interest may already be present within the base images, albeit
without annotations. This poses an additional challenge for
object detection models as they must separate these unanno-
tated objects from the background class, further highlighting
the need for robust few-shot object detection methods tailored
to the intricacies of RSI.

In industrial settings, the emphasis is often on identifying
and detecting novel object classes rather than achieving su-
perior performance on the base classes, which are typically
abundant. Consequently, parallel deployment of two models,
one specializing in the base classes and the other focusing on
the specific industrial objects, is a common approach. This
setup allows for improved learning on the novel classes, with-
out hurting the overall detection performance.

In this article we present a technique to improve the per-
formance of few-shot object detection (FSOD) in remotely-
sensed images. Our contribution centers around the gener-
ation of an additional learning signal, in the form of object
parts proposals (OPP). This is exploited through contrastive
losses, enabling the model to better capture and discriminate
variations within single instances of objects. By explicitly
modeling the object structure, our proposed method offers a
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Fig. 2. Architecture of proposed model. The blue path indicates the OPP extension to classical Faster RCNN, comprising
parts creation, their augmentations, and the losses given by each. The feature queue plays a major role in contrastive loss
effectiveness. In the second stage, only the yellow layers are fine-tuned, while the blue ones are frozen.

viable solution to address the aforementioned limitations.
To evaluate the effectiveness of OPP, we conducted exper-

iments on the DIOR dataset [2]. By comparing our approach
against state-of-the-art methods, we observe consistent im-
provements on the novel classes, demonstrating the efficacy
of our proposed technique in addressing the low data regime
challenges in remote sensing.

2. RELATED WORK

Exploration of object-part relationships was common in
pre-deep learning algorithms. For example, in SIGMA [3], a
rule system for understanding aerial images, Part-Of relation-
ships are manually specified. However, this avenue received
little attention in the deep learning era, as object bounding
boxes and class probabilities are predicted directly from the
image. This can be done in a single stage, when speed is
of concern, or in two stages, as introduced by the seminal
Faster RCNN [4]. This model combines a Region Proposal
Network (RPN) as a first stage for accurate object localiza-
tion, with a Convolutional Neural Network for refinement
and classification, sharing the weights between the two.

Many approaches for few-shot object detection are based
on Faster RCNN. Among the performant ones, the two-stage
fine-tuning approach (TFA) [5] is the simplest, training the
vanilla model once on base classes and fine-tuning specific
layers on novel classes. This works well for natural view
images but cannot deal with the challenges of RSI. In this
domain, the few-shot object detection model (FSODM) [6]
achieves promising results using meta-learning with a YOLO
architecture. These were improved by Shared Attention
Module [7], who adopt a fine-tuning strategy, enhanced with
multi-attention maps that are shared between the two stages.

3. METHOD

Our proposed method, OPP, follows a two-stage training pro-
tocol as in previous works in FSOD for remote sensing [6, 7].
First, we train the base Faster RCNN on an abundant dataset
of base classes. Then, we fine-tune certain parts of the archi-
tecture on a dataset composed of base and novel classes. We
implement our model using the MMDetection framework [8].

The OPP model architecture consists of three parts, and is
illustrated in Fig. 2. The first and core element is a traditional
Faster RCNN [4], made of a feature extractor, a Region Pro-
posal Network (RPN), a Feature Pyramid Network (FPN) [9]
and finally two heads: one for classification of boxes using
the cross entropy loss Lclasif , and one for regression of their
coordinates using smooth L1 loss Lregr:

Lclassif(yi, ŷi) = −yi log(ŷi) (1)

Lregr(ti, vi) =
∑

d∈{x,y,w,h}

smoothL1
(tdi , v

d). (2)

Here, yi and ti are the ground truth class and coordinates of a
box i, respectively, and ŷi, vi are the predicted counterparts.

3.1. Object Parts Proposals(OPPs)

The second part of the architecture, and our main contribu-
tion, is a branch exploiting the Object Parts Proposals. It
stems from the observation that a part of an object is often
sufficient to locate it and classify it. As illustrated in Fig. 1,
the cockpit suffices to classify an airplane and have an idea
of the airplane’s size and orientation. Therefore, the repre-
sentation of this region should be similar to that of the entire
airplane.

To achieve this, we implement a data loader pipeline that
works on the fly to generate two sub-regions for each ground



truth region of an image. They are of size wp × hp, such that
w/3 < wp < w, h/3 < hp < h and are centered randomly
inside the original box surrounding the reference object. This
means that the sub-regions can include areas outside the orig-
inal box ; however, we limit this to be small. Furthermore, we
augment the parts using transformations such as flipping, 90°
rotations, and brightness changes. The generated parts, to-
gether with their augmentations, increase the number of rep-
resentations of each class, which is critical in few-shot learn-
ing. In addition, OPPs are more powerful than per-image data
augmentation, as they allow modelling the object-part rela-
tionship in the feature space.

To learn from this new data source, we employ three
losses. First, we propagate the label from the object to the
parts, and classify them accordingly (Lpart

classif ). The loss of
the part classifier is the same as the object classifier (Eq. (1)),
only applied to representation extracted from the bounding
box describing the part. Furthermore, we repeat the same
procedure for an augmentation of the part image (Laugm

classif ).
Finally, we encourage the similarity of object-part features
using the Contrastive Proposal Encoding (CPE) loss [10]

LCPE =
1

N

N∑
i=1

f(ui) · Lzi (3)

where zi is the RoI feature encoded by the contrastive head
and ui denotes the Intersection-over-Union. The term

Lzi =
−1

Nyi− 1

N∑
i=1,j ̸=i

Iyi=yj · log
exp(sim(zi, zj)/τ)∑N

k=1 Ij ̸=k exp(sim(zi, zj)/τ)

(4)
calculates a softmax-normalized ( exp(·)∑

exp(·) ) cosine-similarity
(sim) between samples in the batch, indexed by j and i. Only
samples within batch where bounding boxes describe the
same class (Iyi=yj ) are considered. The total number of sam-
ples of the same class is denoted by Nyi and the temperature
hyper-parameter τ determines the flatness or tolerance of the
softmax normalization, as in the original InfoNCE loss [11].

More generally, this equation uses the label information
to group instances of the same class, while increasing the dis-
tance between parts extracted from objects pertaining to dif-
ferent classes. In the context of the CPE loss, we would like
to draw attention to the important function of parameter f(ui)
in Eq. (3), representing the Intersection-over-Union between
proposals and ground truth boxes. This reduces the impact of
badly predicted Regions of Interest (RoI).

3.2. Feature queue

As for general contrastive self-supervised learning [12],
learning strong features contrasting parts within and be-
tween objects depends on the abundance and diversity of
the negative examples. To ensure such diversity, in the third
part of the architecture we build a queue of features, where

features representing parts of objects are stored and reused
when necessary. This is inspired from MoCo v2 [12], where
the usage of a features queue promoted stability in learning
and effective contrasting between several classes at once. In
other words, this provides the model a broad panel of neg-
ative and positive samples, so it can effectively form and
distinguish the groups, increasing its robustness to intra-class
diversity. Without the queue, learning would be limited to
current batch’s images, which is reduced in size due to the
memory requirements of contrastive objectives.

Contrary to MoCo v2, our algorithm has access to labels,
which can be used to strengthen the queue formation. To this
end, we enforce that the queue contains at least five examples
of each class, effectively overcoming the class imbalance in-
side the queue. This promotes proper group formation in the
contrastive branch.

4. EXPERIMENTS AND RESULTS

We tested OPP on the DIOR dataset, which offers a consid-
erable number of diverse classes, thus allowing us to effec-
tively simulate a FSOD scenario. We adopt the same data
split strategy of related works [6, 7], thereby identifying five
novel classes for evaluation purposes. These are representa-
tive of real-life scenarios: i) small size (windmill), ii) large
size (train station), iii) similarity with base dataset (airplane,
tennis court vs. airport, basketball court), iv) cluttered envi-
ronments (train station).

Table 1 reports our results on the validation set, employing
the mean average precision (mAP) as the evaluation metric.
It facilitates the comparison with a strong baseline, described
below, and the current state-of-the-art, as reported in Shared
Attention Module paper [7] and FSDOM [6].

To establish a robust baseline, we train a vanilla Faster
RCNN model, fine-tuning all but the convolutional backbone
layers (see Fig. 2). We always use a single image per base
class during training, both in the baseline as in OPP. Our
findings reveal that this imbalanced fine-tuning approach en-
hances the performance of novel classes while compromising
the base ones. This trade-off is acceptable in the common
scenario where both models can be run in parallel.

In the first experiment, we exclusively employ Object
Parts Proposals (OPP) during the fine-tuning process on the
novel classes (OPP-FT). This technique yields a substantial
overall improvement, leading to a 5% increase in mAP com-
pared to the baseline approach (Table 1 row a) ), which is
powered by large enhancements in three of the five classes.
For the remaining two, we can attribute their underperfor-
mance to: i) the overlap between tennis court novel class and
basketball court base class, both consisting of similar sizes,
coloring, and often neighboring each other, ii) the small size
of windmill hindering creation of meaningful sub-parts.

In the subsequent experiment, we incorporate OPP during
both the base training and the fine-tuning stages (OPP-Full).



Table 1. Detection performance (mAP) of OPP variants and current state-of-the-art. OPP performs best on novel class average
(row a) ), outperforming the others by over 5% for 10 and 20 shots scenarios. While OPP-FT underperforms on base classes
(row b) ), applying our technique also during base training (OPP-Full) recovers most of the performance.

Baseline FSODM Shared Attn. Mod. OPP-FT OPP-Full

↓ class; shots → 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20

Baseball field 84.3 88.2 90.5 27.0 46.0 50.0 73.0 78.0 81.0 85.0 85.7 91.1 84.6 87.2 90.4

Airplane 31.0 78.5 82.8 9.0 16.0 22.0 53.0 66.0 67.0 59.6 84.5 88.1 50.0 80.9 84.3

Tennis court 51.2 44.7 61.7 57.0 60.0 66.0 49.0 65.0 70.0 40.7 55.7 64.4 58.2 65.5 69.5

Train station 1.9 13.0 9.5 11.0 14.0 16.0 2.5 3.5 5.8 4.8 18.0 23.9 4.2 14.2 20.0

Windmill 0.6 7.5 8.0 19.0 24.0 29.0 14.0 26.0 30.5 1.8 16.8 15.2 1.5 14.3 8.4

a) Mean Novel 33.78 46.4 50.50 25.0 32.0 36.0 38.30 47.30 50.90 38.39 52.13 56.50 39.69 52.4 54.51
b) Mean base 22.4 54.0 N/A 30.0 40.5

By doing so, we expect the model to benefit from improved
clustering of base class features, consequently facilitating the
fine-tuning process. Indeed, this results in a marginal im-
provement in overall score, while recovering the performance
in tennis court class. Furthermore, OPP-Full exhibits ex-
ceptional gains on the base classes, more than doubling the
performance compared to the baseline. In this way, the OPP
extension proves significant improvements on novel classes,
while remaining competitive on the base ones.

5. CONCLUSION

In conclusion, our approach introduces promising advance-
ments to the field of few-shot object detection for remotely
sensed images by incorporating Object Parts Proposals (OPP)
during fine-tuning and, optionally, base training. This inte-
gration yields notable improvements in performance across
visually diverse classes, highlighting the efficiency and po-
tential of our method in enhancing FSOD tasks on the DIOR
dataset.
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