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1. Foreword

Nowadays, Artificial Intelligence (AI) is omni-present in our 
lives. Computers recognize patterns and generate predicting 
models from large amounts of data, using powerful AI-techniques 
generally known as Machine Learning (ML). Banks and insurance 
companies use it to predict credit or accident risk, governments 
to identify social welfare and tax fraud, supermarkets to profile 
their customers, and recommender systems to suggest movies, 
shopping items, jobs, and ads. Where in the past, collecting and 
analyzing data with AI gave a company a huge competitive ad-
vantage, today it has become standard and companies failing to 
adopt the use of AI are likely to disappear.

This AI-fueled wave of progress, however, also has a backside 
as recently several cases of AI machine bias were exposed; AI lan-
guage models trained on news articles picked up societal bias, a 
recidivism risk assessment tool was shown biased against blacks, 
and search engine results tainted by racial and gender stereo-
types. And these are just a few examples. Contrary to expecta-
tion, the automatically trained AI models turned out not to be the 
impartial judges we were hoping for. The application of such bi-
ased systems leads to institutionalizing and perpetuating exist-
ing bias, hard-coding discrimination and bias into the prediction 
models at the heart of automated decision procedures.

In response to this problem, multiple measures for bias in 
models and data were proposed, and algorithms were adapted 
with built-in safeguards to avoid discrimination by design. Unfor-
tunately, however, the question of what is bias and what consti-
tutes a bias-free model turns out not to be an easy one. All real-
istic models make mistakes; it is inevitable that, no matter how 
carefully a model is trained, every once in a while it will lead to 
wrong decisions, such as, for example, credit denied to a person 
deserving a loan. 
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Fairness measures concentrate on how these errors are dis-
tributed over different communities. For instance, is there a dis-
parity between genders or ethnicities? How to balance errors be-
tween sensitive groups, however, is not clear-cut, and depends 
on the specific situation, assumptions on the data, the ground 
truth, policies such as affirmative action, whether we want fair-
ness at a group or an individual level, etc. And to make things 
worse, impossibility results are showing that fairness criteria that 
seem mandatory from an ethical perspective, are internally in-
consistent. The abundance of methods and measures is confus-
ing and frustrating for practitioners, who are discouraged as it 
seems that any method, no matter how carefully applied, will 
break at least one fairness criterion and be subject to criticism. 

It is in this context that a tool such as the Fairness Compass 
finds its motivation. Based on more than a decade of research, it 
addresses this information overflow problem that hampers wide 
adoption of fairness-aware machine learning by offering a sche-
matic decision diagram to help practitioners to select the fairness 
measure that is most suitable for their specific situation. The se-
lection procedure becomes a transparent process based on a set 
of concrete questions regarding the nature of their data, beliefs 
in its correctness, fairness policies, and whether the focus should 
be more on specificity or sensitivity of the model. 

The Fairness Compass is a much-awaited tool for fair-
ness-aware machine learning, showing data scientists and prac-
titioners the way to a fairer AI.



6



7

Table of Contents

 1. Foreword 4

 2. Introduction 9

 3. Fundamentals 12

 3.1 Machine Learning 12

 3.2 Statistical Measures 16

 4. Problem of Bias 21

 5. Available Fairness Definitions 25

 5.1 Independence 25

 5.2 Sufficiency 29

 5.3 Separation 32

 6. The Dilemma 36

 7. Fairness Compass 39

 7.1 Usage 39

 7.2 Key Decision Nodes 40

 7.3 Sample Application 47

 7.4 Future Development 48

 8. Conclusion 49

 9. Bibliography 50



8



9

2. Introduction

The last few years have seen a number of tremendous break-
throughs in the field of artificial intelligence (AI). A significant 
part of this success is due to major advances in machine learning 
(ML), the data analytics technique behind AI. Machine learning 
does recognise correlations in large data sets. Due to its ability 
to process loads of information in short time, it can uncover sta-
tistical patterns in data that humans cannot spot. This gives ac-
cess to new kind of insights from the data which allow improved 
data analysis and model predictions. Although not absolutely er-
ror-free, the results clearly outperform conventional approaches, 

and often even human experts. The areas of application are ex-
tensive and include medical diagnosis, university admission, 

loan allocation, recidivism prediction, recruitment, online 
advertisement, face recognition, language translation, 

recommendation engines, fraud detection, credit lim-
its, pricing and false news detection.

The heavy dependence on data poses a new chal-
lenge though. The data used for training a machine 
learning algorithm are considered the ground truth. 
This means that during the learning phase, these data 
constitute the comprehensive representation of the 
real world which the algorithm seeks to approximate. 
If the training data includes any kind of unwanted 
bias, the resulting algorithm will incorporate and en-
force it. Worse still, in the absence of robust explana-
tions for the results, it is hardly possible for humans to 
recognise biased predictions of machine learning algo-
rithms as such.

Unwanted bias may happen to be directed against 
sensitive subgroups, defined for instance by gender, 
ethnicity or age. As a consequence, people from one 



such group would be generally disadvantaged 
by the system. However, systematic unequal 
treatment of individuals from different sensitive 
groups is considered discrimination, and there is 
broad consensus in our society that making a dis-
tinction based on a personal characteristic which 
is usually not a matter of choice is unfair. Hence, 
anti-discrimination laws in plenty of legislations 
prohibit actions of this nature.

The traditional approach to fight discrimina-
tion in statistical models when using determin-
istic algorithms is known as “anti-classification”. 
This principle is firmly encoded in current legal 
standards and it simply rules to exclude any at-
tribute which defines membership in a sensitive 
subgroup as feature from the data. For example, 
a user’s gender may not be collected and pro-
cessed in many scenarios. However, since ma-
chine learning is backed by “big data” which con-
tain highly correlated features that can serve as 
possible proxies for those sensitive attributes, 
this approach has been shown to be insufficient 
to avoid discrimination in AI systems [1].

Two main sources for undesired bias have 
been identified in the machine learning pipeline. 
First, if the training data are incorrect or not suf-
ficiently representative in certain aspects, this 
fault may become the source of correlations 
which do not exist in this form in reality. In such a 
case, the machine learning algorithm may detect 
patterns which are in fact not meaningful. Sec-
ond, the training data may indeed faithfully rep-
resent the real world, but the status quo does not 
appear ideal. Without correction, the machine 
learning algorithm would reproduce the current 
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state and thus manifest an existing shortcoming. The objective is 
therefore to adjust for this bias in the resulting algorithm.

Whatever the source, plenty of mitigation techniques have 
been presented by researchers lately to deal with bias in data and 
make AI applications more fair. This is an encouraging develop-
ment towards maintaining trust in AI and eventually overcoming 
some of the potentially biased human judgments which impair 
automatic decision-making. Besides the technical task of adjust-
ing the algorithms or the data, an equally important philosophi-
cal question needs to be settled: what kind of fairness is the ob-
jective? Fairness is a concept of justice and a variety of definitions 
exist which sometimes conflict with each other. Hence, there is no 
uniformly accepted notion of fairness available. In fact, the most 
appropriate fairness definition depends on the use case and it is 
often a matter of legal requirements and ethical standards.

The purpose of this document is to assist AI stakeholders in 
settling for the desired ethical principles by questions and exam-
ples. Applying such a procedure will not only help to identify the 
best fairness definition for a given AI application, but it will also 
make the choice transparent and the implemented fairness more 
understandable for the end user.

In the remainder, we first introduce some mathematical basics 
which are useful to assess and compare the performance of ma-
chine learning algorithms. Second, we explain the problem of un-
wanted bias in data. Next, we present the most commonly used 
fairness definitions in research and explain the ethical principles 
they stand for. Afterwards, we illustrate by example how these 
fairness definitions may be mutually contradictory. Finally, we 
present the Fairness Compass which constitutes an actionable 
guide for AI stakeholders to translate ethical principles into fair-
ness definitions.
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3. Fundamentals

For better understanding of the following sections, we intro-
duce here some fundamental knowledge about machine learn-
ing, and a few statistical measures commonly used to character-
ise its performance.

3.1 Machine Learning

Compared with traditional programming, the difference of 
machine learning is that the reasoning behind the algorithm’s de-
cision-making is not defined by hard-coded rules which were ex-
plicitly programmed by a human, but it is rather learned by ex-
ample data: Thousands, sometimes millions of parameters get 
optimised without human intervention to finally capture a gen-
eralised pattern of the data. The resulting model allows to make 
predictions on new, unseen data with high accuracy.
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This approach can be used for two different kinds of problems: 
For classification, where the task is to predict discrete classes 
such as categories, for example. On the other hand for regres-
sion, where the objective is to predict a continuous quantity, for 
instance a price. Throughout this document, we only consider 
classification tasks, and for the sake of simplicity, we focus on 
the binary case with two classes: positive (1) or negative (0). For 
model output we either consider those very class labels 0 and 1, 
or a score S which corresponds to the probability for the sample 
to be positive.

To illustrate the concepts in this document, we introduce a 
sample scenario about fraud detection in insurance claims. This 
fictional setting will serve as a running example throughout the 
following sections. Verifying the legitimacy of an insurance claim 
is essential to prevent abuse. However, fraud investigations are 
labour intensive for the insurance company. In addition, for some 
types of insurance, many claims may occur at the same time —
for example, due to natural disasters that affect entire regions. 
For policyholders, on the other hand, supplementary checks can 
be annoying, for example when they are asked to answer further 
questions or provide additional documents. Both parties are in-
terested in a quick decision: The customers expect timely reme-
dy, and the company tries to keep the effort low. Therefore, an AI 
system that speeds up such a task could prove very useful. Con-
cretely, it should be able to reliably identify legitimate insurance 
claims in order to make prompt payment possible. Potentially 
fraudulent cases should also be reliably detected and flagged for 
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Figure 1: Graphical representation 
of the sample scenario. White dots 
represent positive samples, black 
ones negative samples. The big white 
circle constitutes the classifier.
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Table 1: Tabular evaluation of the sample scenario: true output class Y compared to 
+- �$�/$*).�è

further investigation.

In order to analyse the performance of a classifier, we com-
+�- �/# �+- �$�/ ��*0/+0/�è�2$/#�/# �/-0 �*0/+0/�1�'0 ��ѵ�
)�/# �
claims data, the output value 1 stands for a fraudulent claim, 
while 0 represents a legitimate claim. Table 1 shows sample pre-
dictions for our running example. For better illustration, we also 
provide a graphical representation of the same results in Figure 
1. The white dots correspond to the positive samples (Y =1), here 
actual fraudulent claims. The black dots represent negative sam-
ples (Y=0), actual legitimate claims in the present scenario. The 
big circle constitutes the boundary of the classifier: Dots with-
$)� /# � �$-�' � #�1 � �  )� +- �$�/ �� �.� +*.$/$1 ҝ!-�0�0' )/� җè� ۙрҘѶ�
�*/.�*0/.$� �/# ��$-�' ��.�) "�/$1 ҝ' "$/$(�/ �җèۙпҘѵ��# ��$!! - )/�
background colours further show where the classifier was right 
(green and light grey), and where not (red and dark grey)

It is worth noting that in this oversimplified 2-dimensional ex-
ample, drawing an ideal border which separates black and white 
dots and thus defining a perfect classifier would be obvious. In 
high-dimensional real world use cases, however, it is hardly pos-
sible to obtain a perfect classifier with error rates of zero; optimi-
sation always remains a matter of trade-offs.
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3.2 Statistical Measures

A so-called “confusion matrix” helps to visualise and compute 
statistical measures commonly used to inspect the performance 
of a machine learning model. The rows of the matrix represent 
the actual output classes, in our case 0 or 1. The columns repre-
sent the predicted output classes by the given classifier. The cells 
where the predicted class corresponds to the actual class con-
tain the counts of the correctly classified instances. Wherever the 
classes differ, the classifier got it wrong and the numbers repre-
sent incorrectly classified samples.

On an abstract level, the figures in the cells are generally iden-
tified by the terms provided in Table 2. Taking the data from our 
running example in Table 1 as a basis, the related confusion ma-
trix looks like Table 3. We notice that the given classifier cor-
rectly predicted 9 claims to be fraudulent and 30 claims to be 
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Table 2: Schema of confusion matrix

Table 3: Confusion matrix for the sample data from Table 1

Predicted

èۙр èۙп

Tr
ue

�ۙр True positives (TP) False negatives (FN)

�ۙп False positives (FP) True negatives (TN)

Predicted

èۙр èۙп

Tr
ue

�ۙр 9 12

�ۙп 12 30

legitimate. However, it also falsely predicted 12 claims to be legit-
imate, which were in fact fraudulent, and 12 claims to be fraudu-
lent, which really were not.

Revisiting the illustration in Figure 1, we further realise that 
the coloured segments in the schema correspond to the different 
cells in the confusion matrix: false negatives (dark grey), true pos-
itives (green), false positives (red), and true negatives (light grey).

From the confusion matrix we can extract plenty of interesting 
statistical measures. We describe those measures in the text and 
provide their formulas and graphical representations in Table 4.
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Actual positives P =

Actual negatives N =

Base rate BR =

Positive rate PR =

Negative rate NR =

Accuracy ACC =

Misclassification rate MR =

True positive rate TPR =

True negative rate TNR =

False positive rate FPR =

False negative rate FNR =

False discovery rate FDR =

Positive predictive value PPV =

False omission rate FOR =

Negative predictive value NPV =

Table 4: Metrics derived from confusion matrix

P

P + N

FP + TN

FN + TP

TP + FP

P + N

TN + FN

P + N

TP + TN

P + N

FN + FP

P + N

FP

TP + FP

TP

TP + FP

FN

TN + FN

TN

TN + FN

TP

P

TN

N

FP

N

FN

P
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First, we count the actual positives in the data set. This num-
ber is the sum of the true positives and the false negatives, which 
can be viewed as missed true positives. Likewise, the number of 
actual negatives is the sum of the true negatives and the false 
positives, which again can be viewed as missed true negatives. 
In our example, those figures represent the numbers of actual 
fraudulent claims and actual legitimate claims.

The (positive) base rate, sometimes also called the prevalence 
rate, represents the proportion of actual positives with respect to 
the entire data set. In our example, this rate describes the share 
of actual fraudulent claims in the data set.

The positive rate is the overall rate of positively classified in-
stances, including both correct and incorrect decisions. The neg-
ative rate is the ratio of negative classification, again irrespec-
tive of whether the decisions were correct or incorrect. In our 
example, the positive rate is the rate of all claims suspected to 
be fraudulent, and the negative rate represents the rate of claims 
which are predicted to be legitimate.

Accuracy is the ratio of the correctly classified instances (pos-
itive and negative) of all decisions. In return, the misclassifica-
tion rate is the ratio of the misclassified instances over all deci-
sions. In our example, accuracy is the proportion of claims which 
were correctly classified, either as fraudulent or as legitimate. 
The misclassification rate refers to the failed classifications, the 
proportion of wrong decisions taken by the classifier.

The true positive rate and the true negative rate describe 
the proportions of correctly classified positive and negative in-
stances, respectively, of their actual occurrences. In the exam-
ple, the true positive rate describes the share of all actual fraud-
ulent claims which were detected as such. The true negative rate 
is the share of actual legitimate claims which were successfully 
discovered.
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Directly linked, the false positive rate and the false nega-
tive rate describe the error rates. The false positive rate denotes 
the proportion of actual negatives which was falsely classified as 
positive. In the same way, the false negative rate describes the 
proportion of actual positives which was misclassified as nega-
tive. In our example, the false positive rate is the proportion of all 
actual legitimate claims which were falsely classified as fraudu-
lent. On the other way around, the false negative rate is the pro-
portion of all actual fraudulent claims which slipped through the 
system and were falsely classified as legitimate.

The false discovery rate describes the share of misclassified 
positive classifications of all positive predictions. So, it is about 
the proportion of positively classified instances which were false-
ly identified or discovered as such. On the contrary, the false 
omission rate describes the proportion of false negative predic-
tions of all negative predictions. These instances, which are ac-
tually positive, were overlooked – they were mistakenly passed 
over or omitted. In our example, the false discovery rate is the er-
ror rate of all claims which were classified as fraudulent. The false 
omission rate describes the share of actually fraudulent claims of 
all claims which were classified as legitimate.

In a similar approach, but rather focusing on the correctly clas-
sified samples, the positive and the negative predictive values 
describe the ratio of samples which were correctly classified as 
positive or negative from all the positive or negative predictions. 
In the example, the positive predictive value is the proportion 
of correctly identified claims in all claims which were flagged 
as fraudulent. The negative predictive value is the proportion 
of correctly classified claims in all claims which were flagged as 
legitimate.
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4. Problem of Bias

Up until here, we have analysed the data as one population 
and did not consider the possible existence of sensitive sub-
groups in the data. However, since decisions from machine learn-
ing algorithms often affect humans, many data sets contain sen-
sitive subgroups by nature of the data. Such subgroups may for 
example be defined by gender, race or religion. The membership 
of an instance is usually identified by a sensitive attribute A. To 
analyse potential bias of a classifier, we split the results by this 
sensitive attribute into subgroups and investigate possible dis-
crepancies among them. Any such deviation could be an indica-
tor for discrimination against one sensitive group.

The idea of pursuing fairness on the basis of membership in 
one or several sensitive groups is called “group fairness” [2]. This 
approach is also adopted in anti-discrimination laws in many leg-
islations with varying lists of sensitive attributes [3, 4]. In addi-
tion, another concept exists in research which tries to achieve 
“individual fairness” by aiming at similar treatment of similar in-
dividuals, taking any attribute into account [5]. In the scope of 
this document, we focus on group fairness, and to facilitate mat-
ters, we only consider two different sensitive subgroups. There-
fore, we assume one sensitive binary attribute A which can take 
the values 0 or 1, for instance representing the gender.

Unwanted bias is said to occur when the statistical measures 
described in the previous section significantly differ from one 
sensitive subgroup to another. Without any closer analysis on 
a per-subgroup basis, such a problem can go completely unno-
ticed. Please note that in order to “see” the groups in the data the 
sensitive information is obviously required to be available.
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We now examine our running example on insurance fraud de-
tection for unwanted bias. The output from the trained model 
remains unchanged, but this time we assume two sensitive sub-
groups in the data, specified by the sensitive attribute A. For in-
stance, we split the data into men (A=0) and women (A=1). The 
separate confusion matrices for each subgroup in Table 5 enable 
us to compare the performance measures.

We notice that the base rates (BR) are identical in both sub-
groups which means in this example that men and women are 
equally likely to file a fraudulent (or a legitimate) claim. However, 
the true negative rate (TNR) for men is 0.79, while for women it 
is 0.57. This means 79% of the valid claims filed by men get cor-
rectly classified as legitimate, while for women that’s the case for 
only 57% of the same type of claims. On the other hand, the false 
omission rate for men is 24% and for women it is 38%. So, fraudu-
lent claims filed by women have a higher chance to remain unde-
tected than fraudulent claims filed by men.



23

Table 5: Separate confusion matrices for sensitive subgroups

(a) Men

(b) Women
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5. $YDLODEOH�)DLUQHVV�'HǡLQLWLRQV

The problem of biased AI has attracted attention only recently, 
but the research community has already produced several fair-
ness definitions to measure unwanted bias in outputs of machine 
learning models as described in the previous section. Additional-
ly, plenty of mitigation methods have been proposed to ensure 
the kind of fairness they represent. For more details on the differ-
ent mitigation approaches we refer the interested reader to sur-
vey papers on the subject as a starting point [1, 2]. In this docu-
ment, we focus on the definitions of fairness and their impact on 
the results in real world scenarios.

In the following, we present the most commonly used defini-
tions for group fairness and explain their characteristics by exam-
ple. Since all notions relate to one of three fundamental condi-
tions of statistical independence which are commonly known as 
independence, sufficiency, and separation, we segment the defi-
nitions by those categories [6].

5.1 Independence

Statistically, fairness definitions satisfy independence if the 
sensitive attribute A is unconditionally independent of the pre-
�$�/$*)�èѵ��-��/$��''4Ѷ� /#$.�( �).�/#�/�2# )��*).$� -$)"��''�+- -
dictions made, the share of positive and negative decisions is 
proportionally equal among the two sensitive subgroups. On an 
individual level, this means that the likelihood of being classified 
as one of the classes is equal for two individuals with different 
sensitive attributes.
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5.1.1 Demographic Parity

The goal of demographic parity is that the favourable outcome 
should be assigned to each subgroup of a sensitive class at equal 
rates [5].

In our running sample scenario, this objective translates to 
equal rates of negative predictions (=classifications as legiti-
mate) for any claims submitted by men or women. In statistical 
terms, the negative rates (NR) of both subgroups should be iden-
tical. However, for the distributions above, NR=0.42 for men and 
NR=0.67 for women. We notice a gap of 25 percent points for the 
favourable outcome between the two sensitive subgroups.

The confusion matrices in Table 6 show possible results for 
a new model which was optimised for demographic parity. The 
number of negative predictions has increased for men, the distri-
bution for women remains unchanged. Both confusion matrices 
now feature a NR of 0.67. Therefore, demographic parity was suc-
cessfully achieved. It is not surprising though that manipulating 
the distribution for men also changes true positive and true neg-
ative rates.
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Table 6: Optimised for Demographic Parity

(a) Men

(b) Women
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5.1.2 Conditional Statistical Parity

This definition extends demographic parity by allowing a set 
of legitimate factors to affect the prediction. The definition is sat-
isfied if members in both subgroups have equal probabilities of 
being assigned to the favourable outcome while controlling for a 
set of legitimate attributes [7].

In our example, a person’s history of prior convictions for 
fraud could be a legitimate attribute affecting the probability for 
a claim to be investigated. In this case, an attribute which doc-
uments previous attempts of fraud could serve as explaining 
variable.

5.1.3 Equal Selection Parity

While demographic parity seeks to obtain equal rates of a pos-
itive outcome, proportional towards the group size, the objec-
tive of equal selection parity is to have equal absolute numbers 
of favourable outcomes across the groups, independent of their 
group sizes [8].

In the example about fraud detection, this fairness definition 
would be satisfied if the exact same number of cases were to be 
identified as legitimate from both groups, even when one group 
had filed more cases than the other.
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Fairness notions satisfy the statistical concept of sufficiency 
when the sensitive attribute A is conditionally independent of the 
/-0 �*0/+0/�1�'0 ���"$1 )�/# �+- �$�/ ��*0/+0/�èѵ�
)�*/# -�2*-�.Ѷ�
when considering all positive and negative predictions, the share 
of correct decisions is equal for both sensitive subgroups. On 
the individual level this translates to equal chances for individu-
als with identical predictions but different sensitive attributes to 
have obtained the right label.

5.2.1  Conditional Use Accuracy Equality

This fairness definition conditions on the algorithm’s predict-
ed outcome, not on the actual outcome [9]. In statistical terms 
this means that the positive predictive value (PPV) and the neg-
ative predictive value (NPV) across both groups should be equal.

In the context of our example, the objective of this fairness 
definition is that for the claims which were predicted as fraud, 
the proportion of correct predictions should be equal across all 
groups. Likewise, for the claims which were predicted as legiti-
mate, the proportion of correct predictions should be the same.

5.2.2  Predictive Parity

Predictive parity is a relaxed version of conditional use accura-
cy equality which only conditions on the positive predicted out-
come [10]. Hence, this fairness definition is already satisfied when 
only the positive predictive value (PPV) is equal for both groups.
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5.2.3 Calibration

Calibration is similar to conditional use accuracy equality but 
instead of the binary output it conditions on the predicted prob-
ability score S. The objective is again to obtain equal positive and 
negative predictive values for all sensitive groups [11]. Such a 
form of calibration across subgroups corresponds to equal prob-
abilities of correct (or incorrect) classification and can therefore 
be achieved by aligning false discovery and false omission rates.

In the context of our example, calibrating the predictions of 
the classifier would result in equal chances for men and wom-
en to get their legitimate claims investigated without cause or to 
have their fraudulent claims falsely approved.

The two confusion matrices in Table 7 show the results of the 
classifier after calibration. The distribution for men was adjusted 
to match the one for women, which was not modified. Due to the 
equal base rates in both distributions, this action has also aligned 
all other statistical measures. 
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Table 7: Optimised for Calibration
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5.3 Separation

Fairness definitions satisfy the principle of separation if the 
sensitive attribute A is conditionally independent of the predict-
 ��*0/+0/�è�"$1 )�/# �/-0 �*0/+0/�1�'0 ��ѵ��#$.�( �).�/#�/��(*)"�
both classes, the proportions of correct predictions are equal per 
sensitive subgroup. On an individual basis, this condition ensures 
that two individuals who actually belong to the same class but 
have different sensitive attributes share the same chance to ob-
tain a correct prediction.

5.3.1 Equalised Odds

Another fairness definition called equalised odds aims at equal 
true positive and true negative rates [12]. The reasoning behind 
this concept is that the probabilities of being correctly classified 
should be the same for everyone. 

In our recurring example, pursuing equalised odds means that 
the chances for claims to be correctly classified as legitimate or 
fraudulent should be equal for men and women; the classifier 
should not be more or less accurate for one of the subgroups.

In Table 8, we show a possible outcome for our example after 
optimising for equalised odds. The results for men have been re-
shuffled to match the true positive and true negative rates of the 
women. Since the base rates are equal in both subgroups, all oth-
er statistical measures have been aligned, too, by this operation.
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Table 8: Optimised for Equalised Odds
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5.3.2 Equalised Opportunities

Optimising for equalised odds can be a difficult task with more 
complex, real data, therefore the fairness definition equalised 
opportunities was proposed as more practicable alternative [12]. 
In this relaxed version of equalised odds, only the error rates for 
the positive outcome are required to be equal.

In our example, equalised opportunities is achieved when men 
and women who filed fraudulent claims are exposed at same 
rates. For legitimate claims, the rates may differ.

5.3.3 Predictive Equality

Another relaxation of equalised odds is predictive equality. 
Here, only the error rates for the negative outcome are required 
to be equal [13].

In our example, predictive equality is satisfied when men and 
women can expect their legitimate claims to get classified as le-
gitimate at equal rates. The error rates for fraudulent claims may 
differ between the subgroups for this fairness definition.

As before, the confusion matrix for women in Table 9 is un-
changed. For men, the output was modified in order to harmo-
nise the false positive rate among the subgroups. The error rates 
for the unfavourable outcome of being suspect of fraud still devi-
ate depending on the gender.

5.3.4 Balance

All previous fairness notions which aim at satisfying separa-
tion took binary outputs as basis. The balance definition uses 
the predicted probability score instead and compares the aver-
age score for both groups per class. This approach seeks to avoid 
steadily lower outcomes in one group, which might go unnoticed 
in the binary case, and instead achieve balanced scores for both 
groups. Depending on the objective it is possible to balance for 
the positive or negative class [14].
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Table 9: Optimised for Predictive Equality
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6. The Dilemma

Presented with all these different fairness definitions it would 
be convenient to obtain “complete fairness” – one ultimate solu-
tion which satisfies all kinds of fairness at the same time. How-
ever, there is mathematical tension across the different fairness 
definitions, and it has been shown that some of them are actu-
ally incompatible with each other in realistic scenarios [14, 15, 
1]. In this case, optimising for one metric comes with discounts 
for another. Taking a closer look this seems obvious considering 
the links between the fairness definitions and the conditional 
relations within the confusion matrix: The formulas share some 
of the cell counts, and the cell counts themselves are related to 
each other (e.g. the sums across the rows, which represent the 
numbers of true observations, are fixed).

In public, especially the trade-off between calibration and 
equal false positive and false negative rates (equalised odds) 
was much discussed. The debate was initiated by a ML algorithm 
called the “Correctional Offender Management Profiling for Alter-
native Sanctions”, or COMPAS, which had been developed by the 
company Northpointe, Inc. The objective of the COMPAS algo-
rithm was to generate an independent, data derived “risk score” 
for several forms of recidivism. This kind of algorithm is used in 
the criminal justice sector in the US to support the judge with 
particular decisions such as granting of bail or parole. The score 
is of informative character and the final decision is still up to the 
judge. In May 2016, the investigative journalism website ProPub-
lica focused attention on possible racial biases in the COMPAS al-
gorithm [16]. Its main argument was based on analysis of the data 
which showed that the results were biased. In particular, the false 
positive rate for people who were black was significantly higher 
compared to people who were white. As a result, black people 
were disproportionately often falsely attributed a high risk of re-



37

cidivism. Northpointe, on the other hand, responded to the accu-
sations by arguing that the algorithm effectively achieved predic-
tive parity for both groups [17]. In a nutshell, this ensured that risk 
scores corresponded to probabilities of reoffending, irrespective 
of any skin colour.

From an objective point of view, it can be stated that both par-
ties make valid and reasonable observations of the data. How-
ever, the heated public debate revealed that it is unavoidable to 
precisely define and communicate the desired fairness objective 
for an application. This decision usually involves arbitration and 
compromise. For example in the given scenario, calibration and 
equalised odds could only be mutually satisfied if one of the fol-
lowing conditions was met: Either the base rates of the sensitive 
subgroups are exactly identical. Or, the outcome classes are per-
fectly separable which would allow for creating an ideal classi-
fier that achieves perfect accuracy. Unfortunately, both require-
ments are very unlikely in real world scenarios.
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Figure 2: Proposed schema to structure the complex 
landscape of fairness definitions for classification. 
Decision tree also available as online tool.

https://axa-rev-research.github.io/fairness-compass.html
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7. Fairness Compass

Based on the limitations explained in the previous section, we 
conclude that it is crucial to consciously identify the most appro-
priate fairness definition for every single use case. To support AI 
stakeholders with this task, we propose the Fairness Compass, 
a schema in form of a decision tree which simplifies the selection 
process. By settling for the desired ethical principles in a formal-
ised way, this schema not only makes identifying the most appro-
priate fairness definition a straightforward procedure, but it also 
helps document the underpinning decisions which may serve as 
deeper explanations to the end user why a specific fairness ob-
jective was chosen for the given application.

In this section, we first explain the general intended usage and 
then deep dive into the key decision points. Finally, we provide 
some technical specifications and outline how we hope to see 
this project evolve.

7.1 Usage

Primarily, the tool consists of the decision tree in Figure 2 
which formalises the decision process. There are three different 
types of nodes: The diamonds symbolise decision points, the 
white boxes stand for actions and the grey boxes with round cor-
ners are the fairness definitions. The arrows which connect the 
nodes represent the possible choices. For increased usability, the 
schema is also available as interactive online tool1. In this version, 
tooltips with extended information, examples and references fa-
cilitate navigating the tree. Furthermore, the interactive online 
tool can be used to document the decision-making process for a 
specific application. The decision path can be highlighted in the 

1 https://axa-rev-research.github.io/fairness-compass.html

https://axa-rev-research.github.io/fairness-compass.html
https://axa-rev-research.github.io/fairness-compass.html
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diagram and the reasoning behind each decision can be added 
in the form of tooltips. In this way, the tool not only serves the AI 
stakeholders for decision-making but also as means of communi-
cation with the users. Due to the general complexity of the top-
ic and the need for context-dependent solutions, we argue that 
sharing details with the broader audience when specifying fair-
ness for a given use case is the best way forward to maintain con-
fidence in AI systems.

7.2 Key Decision Nodes

In the following, we present the major questions we have iden-
tified in order to distinguish between the available fairness defini-
tions. We describe each of them and provide practical examples.

7.2.1 Policy

Fairness objectives can go beyond equal treatment of differ-
ent groups or similar individuals. If the target is to bridge prevail-
ing inequalities by boosting underprivileged groups, affirmative 
actions or quotas can be valid measures. Such a goal may stem 
from law, regulation or internal organisational guidelines. This 
approach rules out any possible causality between the sensitive 
attribute and the outcome. If the data tells a different story in 
terms of varying base rates across the subgroups, this is a strong 
commitment which leads to subordinating the algorithm’s accu-
racy to the policy’s overarching goal. In any case, this decision 
limits the options to fairness definitions which hold the statistical 
principle of independence (subsection 5.1).

For example, many universities aim to improve diversity by ac-
cepting more students from disadvantaged backgrounds. Such 
admission policies acknowledge an equally high academic po-
tential of students from sensitive subgroups and considers their 
possibly lower level of education rather an injustice in society 
than a personal shortcoming.
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7.2.2 Type of Representation

If the decision node about policies from the previous section 
was answered with yes, particular emphasis is placed on equal 
representation of the sensitive subgroups. In this case, two dif-
ferent types of representation exist: equal numbers, regardless 
of the sizes of the subgroups; or proportional equality.

Let’s assume a recruitment scenario, for example, where ten 
women and two men applied for a job. Inviting two women and 
two men for an interview would satisfy gender fairness based on 
equal numbers. For proportional equality, it would be necessary 
to invite five women and one man.

7.2.3 Base Rates

Provided there is no policy in place which determines further 
proceedings, the next crucial question to settle concerns the base 
rate. This measure was already briefly introduced and it consti-
tutes the proportion of actual positives or actual negatives of the 
entire data set (recapped in Figure 3). Across subgroups, the base 
rate can be equal, or it can be different. In case of varying rates, it 
is necessary to decide if the fairness definition should reflect this 
discrepancy or not. The former is the case when it is legitimate 
to assume a causal relationship between the group membership 
and the base rate, and the fairness definition is supposed to take 
this into account. The latter would be appropriate if there is no ra-
tional reason per se to believe that the groups perform different-
ly, and the origin of the different base rates is rather to be found 

Figure 3: Formula and graphical representation of the (positive) base rate

Base rate

BR
P

P + N
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in the data collection process or other data related reasons. Yet 
another reason to choose equal rates as a basis, even though the 
data suggest otherwise, is when the discrepancy is considered to 
originate from historical discrimination. If the fairness objective 
is meant to make up for such social injustice in the past, assuming 
equal base rates helps to push the underprivileged group.

In [18], this question is formalised as two opposing worldviews: 
The worldview what you see is what you get (WYSIWYG) assumes 
the absence of structural bias in the data. Accordingly, this view 
supposes that any statistical variation in different groups actual-
ly represents deviating base rates which should get explored. On 
the other hand, the worldview we’re all equal (WAE) presuppos-
es equal base rates for all groups. Possible deviations are con-
sidered as unwanted structural bias that needs to get corrected.

If base rates are assumed or expected to be equal across sub-
groups, only fairness definitions which satisfy independence 
(subsection 5.1) remain eligible. Otherwise, if the implemented 
fairness is to reflect the different base rates, definitions which 
hold sufficiency or separation (subsections 5.2 and 5.3) are to be 
considered.

In a medical scenario, the base rates for women and men to 
suffer from diabetes are equal, while 99% of breast cancer oc-
curs in women. A fair diagnostic application should acknowledge 
this discrepancy. In a college admission scenario, however, differ-
ent base rates in admission exams across different ethnic groups 
could be attributed to unequal opportunities. If the declared ob-
jective of the fairness definition is to correct such social injustice, 
choosing equal base rates can be a suitable approach.
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7.2.4 Ground Truth

Machine learning algorithms are trained by example. The as-
sumption is that the labels of the training data represent the true 
output, they constitute the supposed ground truth. As the labels 
serve as reference to estimate the model’s accuracy, but also to 
satisfy a fairness metric when this one is conditioning on the la-
bel, the availability of a reliable ground truth makes a significant 
difference.

Depending on the scenario, the ground truth may not exist or 
it may exist but not be available. When the correct outcome can 
be observed, the ground truth exists, and when the labels result 
from objective measurements or describe indisputable facts, the 
truth is easily accessible. In other cases, the correct outcome may 
not be directly measurable, but it is still unambiguously observa-
ble by humans who can perform annotation tasks with sufficient 
diligence to produce reliable labels. Sometimes, the ground truth 
does not exist. In such a scenario, labels are only inferred and 
represent subjective human decisions based on experience, and 
they may contain human bias.

When the ground truth is not available, and it cannot be pro-
duced in a trustworthy way neither, it is not recommended to se-
lect fairness definitions which rely on the true output value as 
is the case for the separation principle (subsection 5.3). Under 
these conditions, it is rather advisable to choose from fairness 
definitions which satisfy independence (subsection 5.1) and do 
not condition on the training label.

In a medical scenario, it is possible to conclusively clarify if a 
tumour is benign or malignant by taking a biopsy and performing 
a laboratory examination. Hence, the ground truth is available. 
In an image recognition application which helps classify animals, 
humans can make training data of good quality available by man-
ually labelling the different species. When predicting recidivism, 
the ground truth is not immediately available since a possible 
new criminal offence would take place in the future and may not 
even be caught.
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7.2.5  Explaining Variables

The data may contain variables which are considered legiti-
mate sources of discrepancy. If some kind of inequality between 
the groups can be shown to stem from those variables, this sort 
of discrimination can be considered explainable and accepted [7].

Let’s suppose salary ranges are to be estimated for job ap-
plicants. However, the training data show that one group works 
fewer hours on average than the other. In this case, a variable 
working hours could serve as an explaining variable.

7.2.6 Label Bias

When no ground truth exists and the available labels are based 
on decisions which were inferred by humans, they may contain 
human bias. As the labels serve as reference to estimate the mod-
el’s accuracy but also to satisfy a fairness metric when this one is 
based on classification rates, it is crucial to mitigate this poten-
tial source of bias, possibly using a label correction framework 
[19, 20].

If such action does not yield satisfying results, the ground 
truth is missing and therefore the same reasoning as before ap-
plies: It is not recommendable to use fairness definitions which 
condition on the true output value but rather choose from the 
ones which hold independence (subsection 5.1).

For example, if software is to learn to describe photos with 
words, then humans generate the training data by tagging sam-
ple images. This task allows for a certain degree of creative free-
dom, for example in the selection of objects or their description. 
Especially if this activity is performed by only a small group of 
people, the training data may include human bias.
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7.2.7 Precision and Recall

After concluding that some sort of reliable ground truth is 
available, a well-known problem in machine learning needs to 
be tackled: the trade-off between precision and recall. Precision 
describes the fraction of positively predicted instances which 
were actually positive, previously introduced as positive predic-
tive value (PPV). Recall is the fraction of actual positive instanc-
es which were correctly identified as such, also defined as true 
positive rate (TPR) earlier in this document. Figure 4 brings back 
the two formulas in a graphical representation. The question to 
be addressed here is which of the two metrics is more sensitive 
to fairness in the given use case. A general rule is that when the 
consequences of a positive prediction have a negative, punitive 
impact on the individual, the emphasis with respect to fairness 
often is on precision. When the result is rather beneficial in the 
sense that the individuals are provided help they would other-
wise forgo, fairness is often more sensitive to recall. The answer 
to this decision node also determines to which of the two remain-
ing categories the ultimate fairness definition will belong to: If the 
focus is on equal precision rates for the sensitive subgroups, the 
final definition will condition on the predicted output and there-
fore hold sufficiency (subsection 5.2). Otherwise, if the focus is on 
equal recall rates, the resulting fairness definition will condition 
on the true output and satisfy separation (subsection 5.3).

Figure 4: Formulas and graphical representations of precision and recall
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In a fraud detection scenario where insurance claims are to 
be investigated it could be considered fair to limit the number 
of wrongly suspected cases and therefore maximise precision at 
equally high level for all subgroups. In a loan approval scenario, 
the focus regarding fairness could be on recall, that is, approving 
an equally high level of loans to creditworthy applicants across 
all groups.

7.2.8 Output Type

A more practical than ethical question, but nonetheless rele-
vant to determining the ultimate fairness definition, is that of the 
desired output type. A score is a continuous value, often between 
0 and 1, which can represent the probability for the positive class 
to be true. When the output is a label instead, the result is an un-
ambiguous decision for one of the classes.

For example in a loan approval scenario, a score is often pre-
ferred because the value of the score leaves the “human in the 
loop” some room for interpretation. However, when the result is 
automatically processed, for example in an online marketing sce-
nario, the class label may be the preferred output type.

Figure 5: Formulas and graphical representations of error rates
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7.2.9 Error Types

Eventually, the final decision depends on which error types 
are considered most sensitive to fairness for the use case. The 
different error types to take into account are the false positive 
and the false negative rate (as introduced earlier and recapped 
in Figure 5). Both represent measures of misclassification, but 
based on the use case, one error type may be more sensitive to 
fairness than the other. Generally, the goal for high-risk applica-
tions is to keep positive and negative classification rates equal for 
all groups. For low-risk applications the fairness objective could 
be weakened by accepting a manageable degree of extra risk in 
order to increase utility of the metric [12]. For better clarity, it may 
be helpful to enhance the confusion matrix (see subsection 3.2) 
by the expected benefits and harms in order to visualise the con-
sequences of correct or false classification scenarios and weight 
the error types accordingly.

In an online marketing scenario where a job offer is supposed 
to be shown to men and women of relevant profiles, differences 
in false positive rates (showing the ad to people who are not eligi-
ble) across the groups may be acceptable as long as the fractions 
of people with relevant profiles are equal. On the other hand, in 
a face recognition application both error types should be equally 
low for all sorts of skin types.

7.3 Sample Application

We apply the Fairness Compass on our running sample sce-
nario about fraud detection in insurance claims. Thanks to our 
online tool, it becomes a straight forward and transparent task 
to provide a possible chain of arguments (see online resource2). 
Please note that this example remains a thought experiment. For 
the same scenario, other considerations with different outcomes 
are possible. The purpose of the Fairness Compass is not to im-
pose one solution but to assist with the decision making and to 
underpin the result.

2 https://axa-rev-research.github.io/fairness-compass/src/main/webapp/plugins/props.js

https://axa-rev-research.github.io/drawio/src/main/webapp/plugins/props.js
https://axa-rev-research.github.io/fairness-compass/src/main/webapp/plugins/props.js
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7.4 Future Development

Research in fair machine learning is constantly advancing, 
new types of fairness definitions may evolve and the general de-
bate on fairness will move on. To anticipate those future devel-
opments, our technical architecture puts easy expandability and 
adaptability at the centre. The online tool was realised using the 
free online diagram software diagrams.net. We used it to design 
the tree and to publish it online. The schema is encoded in XML 
which allows the use of version control to track modifications 
and enhancements. We further developed a plugin for diagrams.
net to extend its scope of functions for the interactive features 
we described above. We also made the source code3 of this plugin 
publicly available.

3 https://axa-rev-research.github.io/fairness-compass/src/main/webapp/plugins/props.js

https://www.diagrams.net/
https://axa-rev-research.github.io/fairness-compass/src/main/webapp/plugins/props.js
https://axa-rev-research.github.io/fairness-compass/src/main/webapp/plugins/props.js
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8. Conclusion

This document seeks to explain in a comprehensible way the 
problem of bias in AI, and why there is no silver bullet to over-
come it. We provide background information on a various list of 
fairness definitions for classification problems in machine learn-
ing and illustrate their different properties by example. As a prac-
tical approach for better orientation in the complex landscape of 
fairness definitions, we further propose the Fairness Compass, a 
decision tree which outputs the best suited option for a given use 
case after settling a few crucial questions on the desired type of 
fairness. This tool also helps document the reasoning behind the 
selection process which contributes to more transparency and 
potentially provides better understanding and increased trust 
among the affected users.

We would like to point out that the presented diagram is cer-
tainly not the last word on the subject. Research in fair machine 
learning is constantly advancing, new types of fairness defini-
tions may evolve and the general debate on fairness will move 
on. Therefore, we consider this work as first step towards struc-
turing the complex landscape of fairness definitions. We would 
be happy to see this project help illustrate the decision making 
in particular application scenarios but also serve as a basis for 
fundamental discussions and further refinements in the course 
of implementing fair machine learning. Eventually, we hope that 
our proposal makes a useful contribution to a smooth implemen-
tation of fair machine learning in real world applications.
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